ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56859

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 2
Классы: 8

Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.
Прислать комментарий     Решение


Задача 56857

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Из точки M, лежащей внутри правильного треугольника ABC, опущены перпендикуляры MP, MQ и MR на стороны AB, BC и CA соответственно. Докажите, что  AP2 + BQ2 + CR2 = PB2 + QC2 + RA2 и  AP + BQ + CR = PB + QC + RA.
Прислать комментарий     Решение


Задача 56858

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.
Прислать комментарий     Решение


Задача 56860

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Докажите, что если точка пересечения высот остроугольного треугольника делит высоты в одном и том же отношении, то треугольник правильный.
Прислать комментарий     Решение


Задача 56861

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .