ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости отмечено несколько точек, каждая покрашена в синий, желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки, нет точек этого же цвета, но есть хотя бы одна другого цвета. Каково максимально возможное число всех точек?

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 101]      



Задача 57240  (#08.045)

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте ромб, две стороны которого лежат на двух данных параллельных прямых, а две другие проходят через две данные точки.
Прислать комментарий     Решение


Задача 57241  (#08.046)

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.
Прислать комментарий     Решение


Задача 57242  (#08.047)

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Через вершину A выпуклого четырехугольника ABCD проведите прямую, делящую его на две равновеликие части.
Прислать комментарий     Решение


Задача 57243  (#08.048)

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Даны середины трех равных сторон выпуклого четырехугольника. Постройте этот четырехугольник.
Прислать комментарий     Решение


Задача 57244  (#08.049)

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Даны три вершины вписанного и описанного четырехугольника. Постройте его четвертую вершину.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .