ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны  n + 1  попарно различных натуральных чисел, меньших 2n  (n > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.

Вниз   Решение


Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 57200  (#08.006)

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Дан четырёхугольник ABCD. Впишите в него параллелограмм с заданными направлениями сторон.

Прислать комментарий     Решение

Задача 57201  (#08.007)

Тема:   [ Вписанный угол (построения) ]
Сложность: 3
Классы: 8,9

Постройте треугольник по a, mc и углу A.
Прислать комментарий     Решение


Задача 57202  (#08.008)

Тема:   [ Вписанный угол (построения) ]
Сложность: 3
Классы: 8,9

Даны окружность и две точки A и B внутри ее. Впишите в окружность прямоугольный треугольник так, чтобы его катеты проходили через данные точки.
Прислать комментарий     Решение


Задача 57203  (#08.009)

Тема:   [ Вписанный угол (построения) ]
Сложность: 4
Классы: 8,9

Продолжения сторон AB и CD прямоугольника ABCD пересекают некоторую прямую в точках M и N, а продолжения сторон AD и BC пересекают ту же прямую в точках P и Q. Постройте прямоугольник ABCD, если даны точки M, N, P, Q и длина a стороны AB.
Прислать комментарий     Решение


Задача 57204  (#08.010)

Тема:   [ Вписанный угол (построения) ]
Сложность: 5
Классы: 8,9

Постройте треугольник по биссектрисе, медиане и высоте, проведенным из одной вершины.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .