ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]      



Задача 57220  (#08.026)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5+
Классы: 8,9

Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.
Прислать комментарий     Решение


Задача 57221  (#08.027)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Постройте треугольник ABC, если дана прямая l, на которой лежит сторона AB, и точки A1, B1 — основания высот, опущенных на стороны BC и AC.
Прислать комментарий     Решение


Задача 57222  (#08.028)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Постройте равнобедренный треугольник, если заданы основания его биссектрис.
Прислать комментарий     Решение


Задача 57223  (#08.029)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 8,9

а) Постройте треугольник ABC, зная три точки A', B', C', в которых биссектрисы его углов пересекают описанную окружность (оба треугольника остроугольные).
б) Постройте треугольник ABC, зная три точки A', B', C', в которых высоты треугольника пересекают описанную окружность (оба треугольника остроугольные).
Прислать комментарий     Решение


Задача 57224  (#08.030)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная три точки A', B', C', симметричные центру O описанной окружности этого треугольника относительно сторон BC, CA, AB.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .