ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 57870

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте четырехугольник ABCD, у которого диагональ AC является биссектрисой угла A, зная длины его сторон.
Прислать комментарий     Решение


Задача 57871

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте четырехугольник ABCD, в который можно вписать окружность, зная длины двух соседних сторон AB и AD и углы при вершинах B и D.
Прислать комментарий     Решение


Задача 57872

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по a, b и разности углов A и B.
Прислать комментарий     Решение


Задача 57873

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по стороне c, высоте hc и разности углов A и B.
Прислать комментарий     Решение


Задача 57874

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по: а) c, a - b (a > b) и углу C; б) c, a + b и углу C.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .