Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 57683

Тема:   [ Векторы сторон многоугольников ]
Сложность: 2+
Классы: 9

M1, M2,..., M6 — середины сторон выпуклого шестиугольника A1A2...A6. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M1M2, M3M4, M5M6.
Прислать комментарий     Решение


Задача 57682

Темы:   [ Векторы сторон многоугольников ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3-
Классы: 8,9,10

Стороны треугольника T параллельны медианам треугольника T1. Докажите, что медианы треугольника T параллельны сторонам треугольника T1.
Прислать комментарий     Решение


Задача 57681

Темы:   [ Векторы сторон многоугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Прислать комментарий     Решение


Задача 57684

Тема:   [ Векторы сторон многоугольников ]
Сложность: 3
Классы: 9

Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0.
Прислать комментарий     Решение


Задача 57685

Темы:   [ Векторы сторон многоугольников ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .