|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)? На стороне $AC$ треугольника $ABC$ взяли такую точку $D$, что угол $BDC$ равен углу $ABC$. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников $ABC$ и $ABD$, если $BC = 1$? |
Страница: 1 [Всего задач: 4]
Какое из двух чисел больше: а) б)
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|