ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

   Решение

Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 7526]      



Задача 35466

Темы:   [ Последовательности (прочее) ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 7,8,9

Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых.
Прислать комментарий     Решение


Задача 35480

Темы:   [ Системы точек ]
[ Проекция на прямую (прочее) ]
Сложность: 3-
Классы: 8,9

На плоскости дано 300 точек, никакие 3 которых не лежат на одной прямой. Докажите, что существует 100 попарно не пересекающихся треугольников с вершинами в этих точках.
Прислать комментарий     Решение


Задача 35510

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 3-
Классы: 7,8,9

Известно, что выражение  14x + 13y  делится на 11 при некоторых целых x и y. Докажите, что  19x + 9y  также делится на 11 при таких x и y.

Прислать комментарий     Решение

Задача 35545

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 8,9

Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Прислать комментарий     Решение

Задача 35582

Темы:   [ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 7,8,9

Какое наименьшее натуральное число не является делителем 50!?

Прислать комментарий     Решение

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .