Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дана пирамида ABCD . Сфера касается плоскостей ABC , ACD и ADB в точках K , L и M соответственно. При этом точка K находится на стороне BC , точка L – на стороне CD , точка M – на стороне DB . Известно, что радиус сферы равен , BAC = 90o , CAD = 75o , DAB = 75o . Найдите объём пирамиды.

Вниз   Решение


Хулиганы Вася и Петя порвали стенгазету, причём Петя рвал каждый кусок на 5 частей, а Вася на 9. При попытке собрать стенгазету нашли 1988 обрывков. Докажите, что нашли не все кусочки.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.

ВверхВниз   Решение


Кащей Бессмертный загадывает три двузначных числа: a, b, c. Иван Царевич должен назвать ему три числа: X, Y, Z, после чего Кащей сообщает ему сумму aX + bY + cZ. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

Вверх   Решение

Задачи

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 644]      



Задача 102855

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Решите уравнение в целых числах  m² − n² = 2002.

Прислать комментарий     Решение

Задача 102856

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Решите уравнение  12a + 11b = 2002  в натуральных числах.

Прислать комментарий     Решение

Задача 102858

Темы:   [ Десятичная система счисления ]
[ Формулы сокращенного умножения ]
Сложность: 3
Классы: 7,8

Подсчитать сумму цифр числа (999..99)3 (в скобке 2002 девятки).
Прислать комментарий     Решение


Задача 102879

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
Прислать комментарий     Решение


Задача 103009

Тема:   [ Теория алгоритмов ]
Сложность: 3
Классы: 5,6,7

Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
Прислать комментарий     Решение


Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .