Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В выпуклом пятиугольнике ABCDE сторона BC параллельна диагонали AD, CD || BE, DE || AC и  AE || BD. Докажите, что AB || CE.

Вниз   Решение


Изначально на стол кладут 100 карточек, на каждой из которых записано по натуральному числу; при этом среди них ровно 28 карточек с нечётными числами. Затем каждую минуту проводится следующая процедура. Для каждых 12 карточек, лежащих на столе, вычисляется произведение записанных на них чисел, все эти произведения складываются, и полученное число записывается на новую карточку, которая добавляется к лежащим на столе. Можно ли выбрать исходные 100 чисел так, что для любого натурального d на столе рано или поздно появится карточка с числом, кратным 2d?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 86111  (#6)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три окружности пересекаются в одной точке ]
Сложность: 5+
Классы: 9,10,11

Дан остроугольный треугольник ABC и точка P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников PAB, PAC, PBC и ABC, а также окружность, проходящая через проекции точки P на стороны треугольника ABC, пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .