ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 65412  (#1)

Темы:   [ Наглядная геометрия ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Каждая грань прямоугольного параллелепипеда 3×4×5 разделена на единичные квадратики. Можно ли вписать во все квадратики по числу так, чтобы сумма чисел в каждом клетчатом кольце ширины 1, опоясывающем параллелепипед, равнялась 120?

Прислать комментарий     Решение

Задача 108100  (#2)

Темы:   [ Вспомогательные равные треугольники ]
[ Многоугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9

В выпуклом семиугольнике A1A2A3A4A5A6A7 диагонали A1A3, A2A4, A3A5, A4A6, A5A7, A6A1 и A7A2 равны между собой. Диагонали A1A4, A2A5, A3A6, A4A7, A5A1, A6A2 и A7A3 тоже равны между собой. Обязательно ли этот семиугольник равносторонний?

Прислать комментарий     Решение

Задача 65385  (#3)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

У каждого целого числа от  n + 1  до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².

Прислать комментарий     Решение

Задача 65389  (#4)

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9

N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.

Прислать комментарий     Решение

Задача 65386  (#5)

Темы:   [ Теория алгоритмов (прочее) ]
[ Доказательство от противного ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

На полоске 1×N на 25 левых клетках стоят 25 шашек. Шашка может ходить на соседнюю справа свободную клетку или перепрыгивать через соседнюю справа шашку на следующую за ней клетку (если эта клетка свободна), движение влево не разрешается. При каком наименьшем N все шашки можно поставить без пробелов в обратном порядке?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .