Страница: 1 [Всего задач: 5]
Задача
66099
(#1)
|
|
Сложность: 3 Классы: 7,8,9
|
Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.
Задача
66100
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка (p, q), что трёхчлен x² + px + q также имеет ровно один корень.
Задача
66101
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если ∠A = 60°, то траектория шарика проходит через центр описанной окружности треугольника ABC.
Задача
66102
(#4)
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?
Задача
66103
(#5)
|
|
Сложность: 3+ Классы: 8,9,10
|
а) На каждой стороне десятиугольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной десятиугольника?
б) Решите ту же задачу для одиннадцатиугольника.
Страница: 1 [Всего задач: 5]