ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Задана электрическая схема из некоторого количества узлов и N резисторов, их соединяющих. Напишите программу, вычисляющую сопротивление между двумя заданными узлами A и B этой схемы. Допускается частичное решение задачи для случая параллельно-последовательных схем.

Пояснения для тех, кто плохо учил в школе физику:
    1. Сила тока равна напряжению, поделенному на сопротивление: I = U / R.
    2. Сумма токов, втекающих в узел, равна сумме токов, вытекающих из него.
    3. Сумма падений напряжений I · R на отдельных участках произвольного замкнутого контура равна сумме всех ЭДС в этом контуре.

Как следствие, получаем следующие формулы:
    1. При последовательном соединении резисторов с сопротивлениями R1 и R2 общее сопротивление R вычисляется по формуле R = R1 + R2;
    2. При параллельном соединении резисторов с сопротивлениями R1 и R2 общее сопротивление R вычисляется по формуле 1 / R = 1 / R1 + 1 / R2.

Входные данные

В первой строке входного файла содержится целое число N – количество резисторов в схеме (1 ≤ N ≤ 50). Во второй строке записаны номера узлов A и B (узлы нумеруются начиная с 1). Каждая из следующих N строк содержит описание очередного резистора в виде тройки целых чисел из диапазона [0, 32767], записанных через пробел. Первые два числа задают номера двух различных узлов схемы, которые этот резистор соединяет, а третье – его сопротивление. Между двумя узлами схемы могут располагаться несколько резисторов.

Выходные данные

Выведите в выходной файл искомое сопротивление не менее чем с 6 верными значащими цифрами.

Пример входного файла

4
1 2
1 3 1
3 4 1
4 3 1
2 4 1

Пример выходного файла

2.50

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 67054  (#6)

Темы:   [ Четность и нечетность ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?

Прислать комментарий     Решение

Задача 67061  (#7)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4
Классы: 9,10,11

Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли
  а) хоть одна из четырёх его клеток целиком накрыта одним из этих треугольников;
  б) в один из этих треугольников можно поместить квадрат со стороной 1?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .