Страница:
<< 1 2 3 4 5 [Всего задач: 24]
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.
|
|
Сложность: 4+ Классы: 9,10,11
|
В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$.
Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре.
Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке.
|
|
Сложность: 5 Классы: 10,11
|
Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.
|
|
Сложность: 6 Классы: 10,11
|
Дан эллипс с фокусом $F$. Две перпендикулярные прямые, проходящие через $F$, пересекают эллипс в четырех точках. Касательные к эллипсу в этих точках образуют описанный вокруг эллипса четырехугольник. Докажите, что этот четырехугольник вписан в конику с фокусом $F$.
Страница:
<< 1 2 3 4 5 [Всего задач: 24]