ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 73667  (#М132)

Темы:   [ Тождественные преобразования ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 7,8,9

По окружности выписаны n чисел  x1, x2, ..., xn,  каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого  k = 1, 2, ..., n – 1  сумма n произведений чисел, отстоящих друг от друга на k мест, равна нулю
(то есть  x1x2 + x2x3 + ... + xnx1 = 0,  x1x3 + x2x4 + ... + xnx2 = 0,  x1x4 + x2x5 + ... + xnx3 = 0  и так далее; например, для  n = 4  можно взять одно из чисел равным –1, а три других – равными 1).
  а) Докажите, что n – квадрат целого числа.
  б)* Существует ли такой набор чисел для  n = 16?

Прислать комментарий     Решение

Задача 73668  (#М133)

Тема:   [ Формула Эйлера. Эйлерова характеристика ]
Сложность: 5
Классы: 10,11

Автор: Маресин В.

Один из простейших многоклеточных организмов — водоросль вольвокс — представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток на 12 больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?
Прислать комментарий     Решение


Задача 73669  (#М134)

Темы:   [ Основные свойства центра масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема о группировке масс ]
[ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 9,10,11

Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?
Прислать комментарий     Решение


Задача 73670  (#М135)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 5-
Классы: 10,11

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .