Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?

Вниз   Решение


Предлагается построить N точек на плоскости так, чтобы все расстояния между ними равнялись заранее заданным числам: для любых двух точек Mi и Mj, где i и j любые числа от 1 до N.

Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно?

б) Достаточно ли требовать, чтобы можно было построить всякие 4 из N точек?

в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда наименьшее k, для которого возможность построения любых k из данных N точек обеспечивает возможность построения и всех N> точек?

ВверхВниз   Решение


Автор: Фольклор

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 30433  (#001)

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Игры-шутки ]
Сложность: 3-
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Прислать комментарий     Решение

Задача 30434  (#002)

Темы:   [ Игры-шутки ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

Прислать комментарий     Решение

Задача 30435  (#003)

Темы:   [ Игры-шутки ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Числа от 1 до 20 выписаны в строчку. Игроки по очереди расставляют между ними плюсы и минусы. После того, как все места заполнены, подсчитывается результат. Если он чётен, то выигрывает первый игрок, если нечётен, то второй. Кто выиграет?

Прислать комментарий     Решение

Задача 30436  (#004)

Темы:   [ Игры-шутки ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 6,7,8

Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?

Прислать комментарий     Решение

Задача 30437  (#005)

Темы:   [ Игры-шутки ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .