|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На биссектрисе угла A треугольника ABC взята точка A1 так, что AA1 = p - a = (b + c - a)/2, и через точку A1 проведена прямая la, перпендикулярная биссектрисе. Если аналогично провести прямые lb и lc, то треугольник ABC разобьется на части, среди которых четыре треугольника. Докажите, что площадь одного из этих треугольников равна сумме площадей трех других. В комнате находятся 85 воздушных шаров — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров? |
Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 6702]
В треугольнике ABC на средней линии DE, параллельной AB, как на диаметре построена окружность, пересекающая стороны AC и BC в
точках M и N.
Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.
В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 12 : 5, а боковая сторона равна 60. Найдите основание.
Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD?
Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 6702] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|