|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи После утренней пробежки Карлсон худеет на килограмм, а к вечеру (после поедания плюшек) его вес увеличивается на треть. К вечеру третьего дня (после того, как он начал бегать) Карлсон обнаружил, что поправился вдвое. Сколько он весил до того, как начал заниматься спортом? |
Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 644]
Что больше:
Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.
Укажите какое-нибудь целое положительное n, при котором
В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?
Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 644] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|