Страница: 1
2 3 4 >> [Всего задач: 16]
В квадрате
ABCD находятся 5 точек. Доказать, что расстояние между какими-то
двумя из них не превосходит
AC.
Петя приобрёл в магазине вычислительный автомат, который за 5 к. умножает
любое введённое в него число на 3, а за 2 к. прибавляет к любому числу 4. Петя
хочет, начиная с единицы, которую можно ввести бесплатно, набрать на автомате
число 1981 и затратить наименьшую сумму денег. Во сколько обойдутся ему
вычисления? А что будет, если он захочет набрать число 1982?
|
|
Сложность: 3+ Классы: 8,9,10
|
Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в
некотором порядке.
Может ли полученное многозначное число быть полным квадратом?
Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон.
Доказать, что отношение каждой диагонали к соответствующей стороне равно
|
|
Сложность: 3+ Классы: 8,9,10
|
Найти все натуральные числа n, для которых число n·2n + 1 кратно 3.
Страница: 1
2 3 4 >> [Всего задач: 16]