Страница: 1 [Всего задач: 4]
Задача
79421
(#2)
|
|
Сложность: 3+ Классы: 11
|
а)
a,
b,
c — длины сторон треугольника. Доказать, что
a4 +
b4 +
c4 − 2(
a2b2 +
a2c2 +
b2c2) +
a2bc +
b2ac +
c2ab ≥ 0.
б) Доказать, что
a4 +
b4 +
c4 − 2(
a2b2 +
a2c2 +
b2c2) +
a2bc +
b2ac +
c2ab ≥ 0 для любых
неотрицательных
a,
b,
c.
Задача
79422
(#3)
|
|
Сложность: 4+ Классы: 9,10,11
|
Петя приобрёл в магазине "Машины Тьюринга и другие вычислительные
устройства" микрокалькулятор, который может по любым действительным числам
x и y вычислить xy + x + y + 1 и не имеет других операций. Петя хочет написать "программу" для вычисления многочлена
1 + x + x² + ... + x1982. Под
"программой" он понимает такую последовательность многочленов f1(x), ..., fn(x), что
f1(x) = x и для любого i = 2, ..., n fi(x) – константа или
fi(x) = fj(x)·fk(x) + fk(x) + fj(x) + 1, где j < i, k < i, причём fn(x) = 1 + x + ... + x1982.
а) Помогите Пете написать "программу".
б) Можно ли написать "программу", если калькулятор имеет только одну операцию xy + x + y?
Задача
79423
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.
Задача
79424
(#5)
|
|
Сложность: 5 Классы: 9,10,11
|
Внутри правильного шестиугольника находится другой правильный шестиугольник с
вдвое меньшей стороной.
Доказать, что центр большого шестиугольника лежит внутри малого шестиугольника.
Страница: 1 [Всего задач: 4]