ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что при простых pi ≥ 5, i = 1, 2, ..., 24, число Решить в целых числах уравнение Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Найти все натуральные числа n, для которых число n·2n + 1 кратно 3. Петя приобрёл в магазине вычислительный автомат, который за 5 к. умножает любое введённое в него число на 3, а за 2 к. прибавляет к любому числу 4. Петя хочет, начиная с единицы, которую можно ввести бесплатно, набрать на автомате число 1981 и затратить наименьшую сумму денег. Во сколько обойдутся ему вычисления? А что будет, если он захочет набрать число 1982? |
Страница: 1 [Всего задач: 4]
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади
которых выражаются целыми числами.
Докажите, что при простых pi ≥ 5, i = 1, 2, ..., 24, число
На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на плоскости три точки, являющиеся вершинами равностороннего треугольника. Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать (процарапывать) окружности, дуги окружностей и делать засечки.
Пусть x и y – натуральные числа. Рассмотрим функцию f(x, y) = ½ (x + y – 1)(x + y – 2) + y. Докажите, что множеством значений этой функции являются все натуральные числа, причём для любого натурального i = f(x, y) числа x и y определяются однозначно.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке