Страница: 1 [Всего задач: 5]
Задача
97781
(#1)
|
|
Сложность: 5 Классы: 9,10,11
|
а) Доказать, что для любых положительных чисел x1, x2, ..., xk (k > 3) выполняется неравенство:
б) Доказать, что это неравенство ни для какого k > 3 нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.
Задача
97782
(#2)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?
Задача
97783
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Задача
97784
(#4)
|
|
Сложность: 5 Классы: 9,10,11
|
Многочлен P(x) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2m с натуральным m. Докажите, что этот многочлен – первой степени.
Задача
97780
(#5)
|
|
Сложность: 3 Классы: 8,9,10
|
Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
а) длины 5;
б) сколь угодно большой длины,
составленная из членов этой последовательности?
Страница: 1 [Всего задач: 5]