ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 98031  (#1)

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

Прислать комментарий     Решение

Задача 54594  (#2)

Темы:   [ Четырехугольники (построения) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Автор: Чикин В.

С помощью циркуля и линейки постройте выпуклый четырёхугольник по серединам его трёх равных сторон.

Прислать комментарий     Решение

Задача 98033  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Существует ли 1000000 таких различных натуральных чисел, что никакая сумма нескольких из этих чисел не является полным квадратом?

Прислать комментарий     Решение

Задача 98034  (#4)

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 10,11

Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .