ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз? Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)².
Последовательности (an) и (bn) заданы условиями a1=1 , b1=2 , an+1= Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1, ..., n так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку хорошей, если число в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которой во всех строках одинаковое количество хороших клеток?
Найдите наибольшее значение функции y = 7x-6 sin x+4 на отрезке [- Приведённый квадратный трёхчлен f(x) имеет два различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет три различных корня, а уравнение f(f(f(x))) = 0 – семь различных корней? Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична. Найдите наименьшее значение функции y = (x-7)ex-6 на отрезке [5;7] . Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и
коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл. Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше? |
Страница: 1 [Всего задач: 5]
На квадратном клетчатом листе бумаги размером 100 * 100 клеток нарисовано несколько прямоугольников. Каждый прямоугольник состоит из целых клеток, различные прямоугольники не накладываются друг на друга и не соприкасаются (см. пример на рис.). Задан массив размером 100 * 100, в котором элемент А [i, j] = 1, если клетка [i, j] принадлежит какому - либо прямоугольнику, и А [i, j] = 0 в противном случае. Написать программу, которая сосчитает и напечатает число прямоугольников.
Напечатать в порядке возрастания все простые несократимые дроби, заключенные между 0 и 1, знаменатели которых не превышают 7.
Даны цело численный массив А [1: n] и число М. Найти множество элементов А [i1], А [i2], ..., А [ik] (1< i1 < ... < ik < n), что А [i1] + А [i2] + ... А [ik] = М. Предполагается, что такое множество заведомо существует.
Дан одномерный массив. Все его элементы, не равные нулю, переписать (сохраняя их порядок) в начало массива, а нулевые элементы - в конец массива (новый массив не заводить).
Задан числовой массив А [1:m, 1:n]. Некоторый элемент этого массива назовем седловой точкой, если он является одновременно наименьшим в своей строке и наибольшим в своем столбце. Напечатать номера строки и столбца какой-нибудь седловой точки и напечатать число 0, если такой точки нет .
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке