ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Угол, образованный лучами y = x и y = 2x при x ≥ 0, высекает на параболе y = x² + px + q две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой. Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу). Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны. Доказать, что число вида n4 + 2n2 + 3 не может быть простым. Докажите, что точка Лемуана треугольника ABC
с прямым углом C является серединой высоты CH.
Найдите все функции f : Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как a : b : a (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях a : b : a и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника. На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать? Существуют ли два квадратных трёхчлена ax² + bx + c и (a + 1)x² + (b + 1)x + (c + 1) с целыми коэффициентами, каждый из которых имеет по два целых корня? Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася. |
Страница: 1 2 >> [Всего задач: 6]
В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?
Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася.
Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?
Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу).
Можно ли разрезать на четыре остроугольных треугольника
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке