ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В городе 57 автобусных маршрутов. Известно, что:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом только одна, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте не менее трёх остановок.
Сколько остановок имеет каждый из 57 маршрутов?

Вниз   Решение


На плоскости расположены две параболы так, что их оси взаимно перпендикулярны, а сами параболы пересекаются в четырёх точках.
Докажите, что эти четыре точки лежат на одной окружности.

ВверхВниз   Решение


Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 103888

Темы:   [ Наглядная геометрия в пространстве ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

Прислать комментарий     Решение


Задача 103884

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Прислать комментарий     Решение

Задача 103885

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 6,7

В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

Прислать комментарий     Решение


Задача 103887

Темы:   [ Ребусы ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 7

Расставьте скобки и знаки арифметических действий так, чтобы получилось верное равенство:  

Прислать комментарий     Решение

Задача 103882

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Найдите наименьшее четырёхзначное число СЕЕМ, для которого существует решение ребуса МЫ + РОЖЬ = СЕЕМ. (Одинаковым буквам соответствуют одинаковые цифры, разным — разные.)

Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .