ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 644]      



Задача 103955

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 2
Классы: 7,8

Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?
Прислать комментарий     Решение


Задача 103960

 [Сбор орехов]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7,8

Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.
Прислать комментарий     Решение


Задача 103973

Темы:   [ Формула включения-исключения ]
[ Объединение, пересечение и разность множеств ]
Сложность: 2
Классы: 5,6,7

В летнем лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке?
Прислать комментарий     Решение


Задача 103974

Темы:   [ Формула включения-исключения ]
[ Объединение, пересечение и разность множеств ]
Сложность: 2
Классы: 5,6,7

Сколько существует натуральных чисел, не превосходящих 1000, которые делятся на 3? На 5? На 15? Не делятся ни на 3, ни на 5?
Прислать комментарий     Решение


Задача 103975

Темы:   [ Формула включения-исключения ]
[ Объединение, пересечение и разность множеств ]
[ Логика и теория множеств (прочее) ]
Сложность: 2
Классы: 6,7

Ученики 7 класса решали две задачи. В конце занятия учитель составил четыре списка: I – решивших первую задачу, II – решивших только одну задачу, III – решивших по крайней мере одну задачу, IV – решивших обе задачи. Какой из списков самый длинный? Могут ли два списка совпадать по составу? Если да, то какие?
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .