ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что число  n5 – 5n³ + 4n  делится на 120 при любом натуральном n.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 391]      



Задача 103986

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 6,7,8

На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

Прислать комментарий     Решение

Задача 103990

Темы:   [ Построение треугольников по различным элементам ]
[ Вспомогательные равные треугольники ]
[ Удвоение медианы ]
Сложность: 3
Классы: 8

Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.

Прислать комментарий     Решение

Задача 103992

 [Делимость на 120]
Темы:   [ Признаки делимости (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

Доказать, что число  n5 – 5n³ + 4n  делится на 120 при любом натуральном n.

Прислать комментарий     Решение

Задача 103995

 [Делимость на 7]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9

Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.

Прислать комментарий     Решение

Задача 103997

 [Наименьшее число]
Тема:   [ Неопределено ]
Сложность: 3
Классы: 8,9

Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.
Прислать комментарий     Решение


Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .