ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Сколькими способами можно разбить прямоугольник 8×2 на прямоугольники 1×2? б) Придумайте и опишите фигуру, которую можно разрезать на прямоугольники 1×2 ровно 555 способами. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 225]
12 спичками несложно ограничить квадрат площадью 9 клеточек со стороной в 1 спичку. А как ограничить теми же спичками фигуру с площадью 4 такие же клеточки? Спички нельзя ломать и накладывать одну на другую.
Сборная Лихтенштейна по футболу выиграла у сборной Люксембурга со счетом 9:5. Докажите, что по ходу матча был момент, когда сборной Лихтенштейна оставалось забить столько голов, сколько уже забила сборная Люксембурга.
а) Сколькими способами можно разбить прямоугольник 8×2 на прямоугольники 1×2? б) Придумайте и опишите фигуру, которую можно разрезать на прямоугольники 1×2 ровно 555 способами.
На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 225]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке