Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Вниз   Решение


Автор: Антонов М.

Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на n частей (на рисунке  n = 5).

Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

ВверхВниз   Решение


Натуральное число N в 999...99 (k девяток) раз больше суммы своиx цифр. Укажите все возможные значения k и для каждого из них приведите пример такого числа.

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Найдите все такие функции  f(x), что  f(2x + 1) = 4x² + 14x + 7.

ВверхВниз   Решение


Автор: Вялый М.Н.

В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?

ВверхВниз   Решение


Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке p стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких p Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?

ВверхВниз   Решение


Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?

ВверхВниз   Решение


Найдите рациональное число, которое отличается от числа
  а)  α = ;   б)  α = 2 + ;   в)  α = 3 +   не более чем на 0,0001.

ВверхВниз   Решение


Вычислить с шестьюдесятью десятичными знаками     (60 девяток).

ВверхВниз   Решение


В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)

ВверхВниз   Решение


Сравните без помощи калькулятора числа:  .

ВверхВниз   Решение


На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 104084  (#1)

Тема:   [ Уравнения с модулями ]
Сложность: 2
Классы: 7,8,9

Решите уравнение: |x - 2005| + |2005 - x| = 2006.
Прислать комментарий     Решение


Задача 54173  (#2)

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Прислать комментарий     Решение

Задача 104086  (#3)

Темы:   [ Текстовые задачи (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7,8

На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?

Прислать комментарий     Решение

Задача 108197  (#4)

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы углов A и C. Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.

Прислать комментарий     Решение

Задача 104088  (#5)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Маша задумала натуральное число и нашла его остатки при делении на 3, 6 и 9. Сумма этих остатков оказалась равна 15.
Найдите остаток от деления задуманного числа на 18.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .