|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Остров Толпыго имеет форму многоугольника. На нём расположено несколько стран, каждая из которых имеет форму треугольника, причём каждые две граничащие страны имеют целую общую сторону (т.е. вершина одного треугольника не лежит на стороне другого). Доказать, что карту этого острова можно так раскрасить тремя красками, чтобы каждая страна была закрашена одним цветом и любые две соседние страны были закрашениы в разные цвета. Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта. |
Страница: 1 2 >> [Всего задач: 6]
Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.
Даны квадратные трёхчлены f и g с одинаковыми старшими коэффициентами. Известно, что сумма четырёх корней этих трёхчленов
Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём ВМ : МС = 1 : 3. На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?
Найдите все простые числа р, для каждого из которых существует такое натуральное число m, что
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|