Страница:
<< 1 2
3 4 5 >> [Всего задач: 25]
|
|
Сложность: 3 Классы: 8,9,10,11
|
a, b, c – стороны треугольника. Докажите неравенство
|
|
Сложность: 3+ Классы: 7,8,9
|
Покажите как любой четырехугольник разрезать на три трапеции
(параллелограмм тоже можно считать трапецией).
|
|
Сложность: 3+ Классы: 6,7,8
|
В шахматном турнире каждый участник сыграл с каждым из остальных две партии: одну белыми фигурами, другую – чёрными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков). Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все такие пары натуральных чисел x, y, что числа x³ + y и y³ + x делятся на x² + y².
Страница:
<< 1 2
3 4 5 >> [Всего задач: 25]