ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В какой из групп сумма всех цифр, используемых для записи чисел, больше и на сколько?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107722  (#1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7,8

На протяжении некоторого года (от 1 января до 31 декабря включительно) количество вторников было равно количеству четвергов. Следует ли из этого, что и количество сред было такое же? Рассмотрите два случая:
а) в году было 365 дней,
б} в году было 366 дней.
Прислать комментарий     Решение


Задача 107723  (#2)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В какой из групп сумма всех цифр, используемых для записи чисел, больше и на сколько?

Прислать комментарий     Решение

Задача 107724  (#3)

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Известно, что  х = 2а5 = 5b² > 0,  числа а и b – целые. Каково наименьшее возможное значение х?

Прислать комментарий     Решение

Задача 107725  (#4)

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Построение треугольников по различным элементам ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 7,8,9,10

Даны прямая и точка вне неё. Как с помощью циркуля и линейки построить прямую, параллельную данной прямой и проходящую через данную точку, проведя при этом возможно меньшее число линий (окружностей и прямых), так что последняя проведённая линия — это искомая прямая? Какого числа линий Вам удалось добиться?
Прислать комментарий     Решение


Задача 107727  (#6)

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .