ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107845

Темы:   [ Задачи-шутки ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7,8,9

Найдутся ли натуральные числа x, y и z, удовлетворяющие условию  28x + 30y + 31z = 365?

Прислать комментарий     Решение

Задача 107846

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Прислать комментарий     Решение

Задача 107848

Темы:   [ Отношение порядка ]
[ Последовательности (прочее) ]
Сложность: 3+
Классы: 7,8,9

Некоторые из чисел a1, a2, ..., a200 написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел a1, a2, ..., a100 содержатся все натуральные числа от 1 до 100 включительно.
Прислать комментарий     Решение


Задача 107849

Тема:   [ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

Прислать комментарий     Решение

Задача 108163

Темы:   [ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём  ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .