Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.

Вниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Найдите наименьшую величину выражения   + + ... + .

ВверхВниз   Решение


Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.

ВверхВниз   Решение


На столе лежат две стопки монет: в одной из них 30 монет, а в другой - 20. За ход разрешается взять любое количество монет из одной стопки. Проигрывает тот, кто не сможет сделать ход. Кто из игроков выигрывает при правильной игре?

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ точки $O$, $I$ – центры описанной и вписанной окружностей, $P$ – произвольная точка на отрезке $OI$, точки $P_A$, $P_B$ и $P_C$ – вторые точки пересечения прямых $PA$, $PB$ и $PC$ с окружностью $ABC$. Докажите. что биссектрисы углов $BP_AC$, $CP_BA$ и $AP_CB$ пересекаются в одной точке, лежащей на прямой $OI$.

ВверхВниз   Решение


Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.

ВверхВниз   Решение


На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108402  (#1)

Темы:   [ Инварианты ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 7,8,9

На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
Прислать комментарий     Решение


Задача 108403  (#2)

Темы:   [ Ориентированные графы ]
[ Деревья ]
[ Раскраски ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.

Прислать комментарий     Решение

Задача 30292  (#3)

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 6,7

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Прислать комментарий     Решение

Задача 108405  (#4)

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.)
Прислать комментарий     Решение


Задача 108406  (#5)

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .