ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 66059

Темы:   [ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 6,7

Саша и Ваня родились 19 марта. Каждый из них отмечает свой день рождения тортом со свечками по количеству исполнившихся ему лет. В тот год, когда они познакомились, у Саши на торте было столько же свечек, сколько у Вани сегодня. Известно, что суммарное количество свечек на четырёх тортах Вани и Саши (тогда и сегодня) равно 216. Сколько лет исполнилось Ване сегодня?

Прислать комментарий     Решение

Задача 66060

Темы:   [ Наглядная геометрия ]
[ Неопределено ]
Сложность: 3
Классы: 6,7

В большой квадратный зал привезли два квадратных ковра, сторона одного ковра вдвое больше стороны другого. Когда их положили в противоположные углы зала, они в два слоя накрыли 4 м², а когда их положили в соседние углы, то 14 м². Каковы размеры зала?

Прислать комментарий     Решение

Задача 66061

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 6,7

Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.)

Прислать комментарий     Решение

Задача 108887

Темы:   [ Вспомогательные равные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Прислать комментарий     Решение

Задача 66058

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

В Стране дураков ходят монеты в 1, 2, 3, ..., 19, 20 сольдо (других нет). У Буратино была одна монета. Он купил мороженое и получил одну монету сдачи. Снова купил такое же мороженое и получил сдачу тремя монетами разного достоинства. Буратино хотел купить третье такое же мороженое, но денег не хватило. Сколько стоит мороженое?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .