Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]
Задача
109552
(#94.5.11.2)
|
|
Сложность: 6- Классы: 9,10,11
|
Внутри выпуклого стоугольника выбрано
k точек,
2
k 50
. Докажите, что можно отметить
2
k
вершин стоугольника так, чтобы все выбранные точки оказались внутри
2
k -угольника с отмеченными
вершинами.
Задача
109553
(#94.5.11.3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Две окружности
S1 и
S2 касаются внешним образом в точке
F. Их общая касательная касается
S1 и
S2 в точках
A и
B соответственно. Прямая, параллельная
AB, касается окружности
S2 в точке
C и пересекает окружность
S1 в точках
D и
E. Докажите, что общая хорда описанных окружностей треугольников
ABC и
BDE, проходит через точку
F.
Задача
109554
(#94.5.11.4)
|
|
Сложность: 6- Классы: 9,10,11
|
В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две
фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать
параллельно линиям сетки на целое число клеток.
Известно, что для любого положения первой фигуры сумма чисел,
записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй
фигуры, при котором сумма чисел в накрываемых ею клетках положительна.
Задача
109555
(#94.5.11.5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n an+1 = an + bn, где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки.
Задача
109562
(#94.5.11.6)
|
|
Сложность: 4+ Классы: 9,10,11
|
Функции f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар (x, y), для которых
f(x) = g(y), через n – число пар, для которых f(x) = f(y), а через k – число пар, для которых g(x) = g(y). Докажите, что 2m ≤ n + k.
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]