Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.

Вниз   Решение


В остроугольном треугольнике ABC проведены высоты AHA, BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.

ВверхВниз   Решение


Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

ВверхВниз   Решение


Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5.
Найдите число отличных билетов.

ВверхВниз   Решение


Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?

ВверхВниз   Решение


Приведите пример многочлена P(x) степени 2001, для которого  P(x) + P(1 – x) ≡ 1.

ВверхВниз   Решение


Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

ВверхВниз   Решение


На диагонали AC выпуклого четырёхугольника ABCD выбрана точка K, для которой  KD = DC, ∠BAC = ½ KDC,  ∠DAC = ½ ∠KBC.
Докажите, что  ∠KDA = ∠BCA  или  ∠KDA = ∠KBA.

ВверхВниз   Решение


В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила  n+1/4.

ВверхВниз   Решение


Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?

ВверхВниз   Решение


Докажите, что из всех треугольников данной площади равносторонний имеет наименьший периметр.

ВверхВниз   Решение


На плоскости даны точки A и B. Найдите ГМТ M, для которых разность квадратов длин отрезков AM и BM постоянна.

ВверхВниз   Решение


Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что уравнение  cx5 + bx + a = 0  также имеет три различных корня.

ВверхВниз   Решение


На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2002.
Какие числа остались на доске?

ВверхВниз   Решение


Квадратные трёхчлены  P(x) = x² + ax + b  и  Q(x) = x² + cx + d  таковы, что уравнение  P(Q(x)) = Q(P(x))  не имеет действительных корней.
Докажите, что  b ≠ d .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110120  (#03.4.11.1)

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что  px = y³ + 1.

Прислать комментарий     Решение

Задача 108208  (#03.4.11.2)

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

На диагонали AC выпуклого четырёхугольника ABCD выбрана точка K, для которой  KD = DC, ∠BAC = ½ KDC,  ∠DAC = ½ ∠KBC.
Докажите, что  ∠KDA = ∠BCA  или  ∠KDA = ∠KBA.

Прислать комментарий     Решение

Задача 110122  (#03.4.11.3)

Темы:   [ Монотонность, ограниченность ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Функции  f(x) – x  и  f(x²) – x6  определены при всех положительных x и возрастают.
Докажите, что функция     также возрастает при всех положительных x.

Прислать комментарий     Решение

Задача 110807  (#03.4.11.4)

Темы:   [ Принцип крайнего (прочее) ]
[ Скалярное произведение. Соотношения ]
[ Метод усреднения ]
Сложность: 5+
Классы: 9,10,11

На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.
Прислать комментарий     Решение


Задача 110123  (#03.4.11.5)

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 4-
Классы: 9,10,11

Квадратные трёхчлены  P(x) = x² + ax + b  и  Q(x) = x² + cx + d  таковы, что уравнение  P(Q(x)) = Q(P(x))  не имеет действительных корней.
Докажите, что  b ≠ d .

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .