Страница:
<< 1 2 [Всего задач: 8]
Задача
111866
(#08.5.11.6)
|
|
Сложность: 6 Классы: 9,10,11
|
Фокусник отгадывает площадь выпуклого 2008-угольника
A1A2...
A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.
Задача
111867
(#08.5.11.7)
|
|
Сложность: 6+ Классы: 9,10,11
|
Дан выпуклый четырёхугольник
ABCD . Пусть
P и
Q – точки пересечения лучей
BA и
CD ,
BC и
AD соответственно, а
H – проекция
D на
PQ . Докажите, что четырёхугольник
ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников
ADP и
CDQ видны из точки
H под равными углами.
Задача
111868
(#08.5.11.8)
|
|
Сложность: 5 Классы: 9,10,11
|
В блицтурнире принимали участие 2n + 3 шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее n игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.
Страница:
<< 1 2 [Всего задач: 8]