|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Существует ли ограниченная функция f : Даны две окружности, длина каждой из которых равна 100 см. На одной из них отмечено 100 точек, а на другой — несколько дуг, сумма длин которых меньше 1 см. Докажите, что эти окружности можно совместить так, чтобы ни одна отмеченная точка не попала на отмеченную дугу. Внутри ромба АВСD выбрана точка N так, что треугольник ВСN – равносторонний. Биссектриса BL треугольника ABN пересекает диагональ АС в точке K. Докажите, что точки K, N и D лежат на одной прямой. Докажите, что окружность при осевой симметрии переходит в окружность. Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков. Докажите, что при любых натуральных 0 < k < m < n числа |
Страница: 1 2 >> [Всего задач: 7]
Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?
На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.
Страница: 1 2 >> [Всего задач: 7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|