ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Окружности $ \alpha$, $ \beta$ и $ \gamma$ имеют одинаковые радиусы и касаются сторон углов A, B и C треугольника ABC соответственно. Окружность $ \delta$ касается внешним образом всех трех окружностей $ \alpha$, $ \beta$ и $ \gamma$. Докажите, что центр окружности $ \delta$ лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.

Вниз   Решение


Если  a ≡ b (mod m),  n – натуральное число, то  an ≡ bn (mod m).

ВверхВниз   Решение


Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

ВверхВниз   Решение


Саша разрезал шахматную доску 8× 8 по границам клеток на 30 прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.


Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 115373  (#1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6

На батоне колбасы нарисованы тонкие поперечные кольца. Если разрезать по красным кольцам, получится 5 кусков, если по желтым — 7 кусков, а если по зеленым — 11 кусков. Сколько кусков колбасы получится, если разрезать по кольцам всех трёх цветов?
Прислать комментарий     Решение


Задача 115374  (#2)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

В Лесогории живут только эльфы и гномы. Гномы лгут, говоря про своё золото, а в остальных случаях говорят правду. Эльфы лгут, говоря про гномов, а в остальных случаях говорят правду. Однажды два лесогорца сказали:
А: Всё моё золото я украл у Дракона.
Б: Ты лжешь.
Определите, эльфом или гномом является каждый из них.
Прислать комментарий     Решение


Задача 115375  (#3)

Темы:   [ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 2+
Классы: 5,6,7

Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.
Прислать комментарий     Решение


Задача 115376  (#4)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7

В обменном пункте совершаются операции двух типов:
  1) дай 2 евро – получи 3 доллара и конфету в подарок;
  2) дай 5 долларов – получи 3 евро и конфету в подарок.
Когда богатенький Буратино пришел в обменник, у него были только доллары. Когда ушел – долларов стало поменьше, евро так и не появились, зато он получил 50 конфет. Во сколько долларов обошелся Буратино такой "подарок"?

Прислать комментарий     Решение


Задача 115377  (#5)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Геометрия на клетчатой бумаге ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 5,6,7

Саша разрезал шахматную доску 8× 8 по границам клеток на 30 прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.


Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .