|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что отрезок, соединяющий центры вписанной и вневписанной окружностей треугольника, делится описанной окружностью пополам.
На некотором острове 15 государств. У каждого из них хотя бы одно соседнее государство дружественное. Докажите, что найдётся государство, у которого чётное число дружественных соседей. (Два государства называются соседними, если у них имеется целый кусок общей границы.) Дана бесконечная последовательность чисел a1, ..., an, ... Она периодична с периодом 100, то есть a1 = a101, a2 = a102, ... Известно, что a1 ≥ 0, a1 + a2 ≤ 0, a1 + a2 + a3 ≥ 0 и вообще, сумма a1 + a2 + ... + an неотрицательна при нечётном n и неположительна при чётном n. Доказать, что |a99| ≥ |a100|. Из пункта А в пункт В вышел пешеход. Одновременно с ним из В в А выехал велосипедист. Через час пешеход оказался ровно посередине между пунктом А и велосипедистом. Ещё через 15 минут они встретились, и каждый продолжил свой путь. Сколько времени потратил пешеход на путь из А до В? (Скорости пешехода и велосипедиста постоянны.) |
Страница: 1 [Всего задач: 5]
Какие цифры могут стоять на месте букв в примере AB·C = DE, если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?
Сколько времени потратил пешеход на путь из А до В? (Скорости пешехода и велосипедиста постоянны.)
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|