|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Буратино правильно решил пример, но испачкал свою тетрадь. Петя расставляет 500 королей на клетках доски 100×50 так, чтобы они не били друг друга. А Вася – 500 королей на белых клетках (в шахматной раскраске) доски 100×100 так, чтобы они не били друг друга. У кого больше способов это сделать? Костя посадил вдоль дорожки некоторое количество луковиц тюльпанов. Потом пришла Таня и между каждой парой соседних посаженных луковиц посадила новую луковицу. Потом пришла Инна и между каждой парой соседних луковиц, посаженных до неё, посадила новую луковицу. Потом пришёл Дима и сделал то же самое. Все посаженные луковицы взошли и расцвело 113 тюльпанов. Сколько луковиц посадил Костя? В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну. У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань. |
Страница: 1 2 >> [Всего задач: 7]
В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.
У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.
Найдите все такие натуральные числа a и b, что (a + b²)(b + a²) является целой степенью двойки.
На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что BP = CQ.
Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
Страница: 1 2 >> [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|