|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан квадрат $ABCD$ с центром $O$. Из точки $P$, лежащей на меньшей дуге $CD$ описанной около квадрата окружности, проведены касательные к его вписанной окружности, пересекающие сторону $CD$ в точках $M$ и $N$. Прямые $PM$ и $PN$ пересекают отрезки $BC$ и $AD$ соответственно в точках $Q$ и $R$. Докажите, что медиана треугольника $OMN$ из вершины $O$ перпендикулярна отрезку $QR$ и равна его половине. Доказать, что любое чётное число 2n Докажите неравенство для положительных значений переменных: x² + y² + 1 ≥ xy + x + y. а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла. б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A. В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n. На плоскости дано n>4 точек. Известно, что любые 4 из них являются вершинами выпуклого четырехугольника. Докажите, что эти n точек являются вершинами выпуклого n-угольника. Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n . В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог. |
Страница: 1 [Всего задач: 5]
Грани выпуклого многогранника – подобные треугольники.
Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?
По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в чёрный цвет. При каких k можно за несколько таких ходов покрасить все 100 камней в чёрный цвет?
Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|