ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник C1C2O. В нём проводится биссектриса C2C3, затем
в треугольнике C2C3O – биссектриса C3C4 и так далее. Докажите, что число abcd делится на 99 тогда и только тогда, когда число ab + cd делится на 99.
Составьте уравнение плоскости, содержащей прямую
С помощью циркуля и линейки постройте параллелограмм по отношению диагоналей, углу между диагоналями и стороне.
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С. |
Страница: << 1 2 3 >> [Всего задач: 15]
Внутри параллелограмма ABCD выбрана произвольная точка Р и проведены отрезки РА, РВ, РС и PD. Площади трёх из образовавшихся треугольников равны 1, 2 и 3 (в каком-то порядке). Какие значения может принимать площадь четвёртого треугольника?
На шахматной доске расставили n белых и n чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение n.
Найдите наибольшее значение выражения x²y – y²x, если 0 ≤ x ≤ 1 и 0 ≤ y ≤ 1.
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
Найдите все неотрицательные решения системы уравнений:
Страница: << 1 2 3 >> [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке