ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Найдите все пары натуральных чисел  (а, b),  для которых выполняется равенство  НОК(а, b) – НОД(а, b) = ab/5.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]      



Задача 109458

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние величины ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

Прислать комментарий     Решение

Задача 116433

Темы:   [ Функции. Непрерывность (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что  f(1) + f(2) = 10  и    при любых а и b. Найдите f(22011).

Прислать комментарий     Решение

Задача 116435

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

На шахматной доске расставили n белых и n чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение n.

Прислать комментарий     Решение

Задача 116437

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что  ВС1 = С1А1 = А1В1 = В1С.
Докажите, что точка пересечения высот треугольника С1А1В1 лежит на биссектрисе угла А.

Прислать комментарий     Решение

Задача 116438

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Найдите все пары натуральных чисел  (а, b),  для которых выполняется равенство  НОК(а, b) – НОД(а, b) = ab/5.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .