Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Построить треугольник по двум сторонам так, чтобы медианы этих сторон были взаимно перпендикулярны.

Вниз   Решение


Сколько корней имеет уравнение sin x=x/100 ?

ВверхВниз   Решение


Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются.

ВверхВниз   Решение


На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность.

ВверхВниз   Решение


Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?

ВверхВниз   Решение


Сторона основания ABCD правильной пирамиды SABCD равна , угол между боковым ребром пирамиды и плоскостью основания равен . Точка M – середина ребра SD, точка K – середина ребра AD. Найдите:

1) объём пирамиды CMSK;

2) угол между прямыми CM и SK;

3) расстояние между прямыми CM и SK.

Вверх   Решение

Задачи

Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 7526]      



Задача 116513

Темы:   [ Признаки перпендикулярности ]
[ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3-
Классы: 10,11

Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

Прислать комментарий     Решение

Задача 116516

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна , угол между боковым ребром пирамиды и плоскостью основания равен . Точка M – середина ребра SD, точка K – середина ребра AD. Найдите:

1) объём пирамиды CMSK;

2) угол между прямыми CM и SK;

3) расстояние между прямыми CM и SK.

Прислать комментарий     Решение

Задача 34834

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
Прислать комментарий     Решение


Задача 35476

Темы:   [ Функции одной переменной. Непрерывность ]
[ Итерации ]
Сложность: 3
Классы: 10,11

Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней.
Прислать комментарий     Решение


Задача 52497

Темы:   [ Метод ГМТ ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3
Классы: 8,9

Постройте окружность, проходящую через данную точку A и касающуюся данной прямой в данной точке B.

Прислать комментарий     Решение


Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .