ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

Вниз   Решение


Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?

ВверхВниз   Решение


На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116555  (#10.1)

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 9,10

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Прислать комментарий     Решение

Задача 116557  (#10.3)

Темы:   [ Четность и нечетность ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10

Даны различные натуральные числа  a1, a2, ..., a14.  На доску выписаны все 196 чисел вида  ak + al,  где  1 ≤ k, l ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

Прислать комментарий     Решение

Задача 116556  (#10.2)

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Задача 116558  (#10.4)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 9,10

Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Прислать комментарий     Решение

Задача 116559  (#10.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 9,10

Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 3)(n + 4)  будет целым.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .