|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S. Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше? На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK. |
Страница: 1 2 >> [Всего задач: 8]
Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.
Даны различные натуральные числа a1, a2, ..., a14. На доску выписаны все 196 чисел вида ak + al, где 1 ≤ k, l ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?
На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK.
Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений ax11 + bx4 + c = 0, bx11 + cx4 + a = 0, cx11 + ax4 + b = 0 имеют общий корень. Докажите, что все три уравнения имеют общий корень.
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 3)(n + 4) будет целым.
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|