|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Повесьте картину на веревочке на два гвоздя так, чтобы при вытаскивании любого из гвоздей картина падала. Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 3)(n + 4) будет целым.
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 3)(n + 4) будет целым.
Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений F(x) = 0, G(x) = 0, F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|