ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии? Петя и Витя ехали вниз по эскалатору. Посередине эскалатора хулиган Витя сорвал с Пети шапку и бросил её на встречный эскалатор. Пострадавший Петя побежал обратно вверх по эскалатору, чтобы затем спуститься вниз и вернуть шапку. Хитрый Витя побежал по эскалатору вниз, чтобы затем подняться вверх и успеть раньше Пети. Кто успеет раньше, если скорости ребят относительно эскалатора постоянны и не зависят от направления движения? Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N? Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM. |
Страница: 1 2 >> [Всего задач: 6]
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.
На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?
Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.
В треугольнике ABC точка I – центр вписанной окружности, точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что OI ⊥ AC.
Дана окружность и хорда AB, отличная от диаметра. По большей дуге AB движется точка C. Окружность, проходящая через точки A, C и точку H пересечения высот треугольника ABC, повторно пересекает прямую BC в точке P. Докажите, что прямая PH проходит через фиксированную точку, не зависящую от положения точки C.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке